第一百八十章:用世界级数学难题来检验自己的学习-《大国院士》


    第(1/3)页

    

    向德利涅教授请了一周的假期后,徐川潜在宿舍中整理着米尔扎哈尼教授留给他的稿纸。

    这次整理,就不是粗略的过一遍了。

    而是详细的去学习这些稿件中的知识,将其吸收转化成自己的智慧。

    一名菲尔兹奖临终前的遗留,尽管只是一部分,也足够一个普通的数学家研究数年甚至是半生了。

    对于徐川而言,这些遗留的稿纸中的计算并不是什么珍贵的东西,有数学基础,很多人都能计算推衍出来。

    但这些公式与笔迹中遗留的思想和数学方法与路线,却弥足珍贵。

    这些东西,哪怕还未成型,仅仅只是一些思路,也是很多数学家终一生都不见得能做出来的成果。

    毕竟在所有的自然科学中,若要说依赖天赋的程度,数学无疑是站在金字塔尖的独一档。

    哪怕是物理和化学,在依赖天赋的程度上都略逊色于数学。

    可以说没有什么其他学科比数学更吃天赋了。

    这是一门需要强大逻辑思维才能‘真正’学好的科目。

    数学问题往往需要你发挥一定的创造力,从而解决陌生的问题。

    如果老师的水平不够,而你又没能自己找到正确的方法和方向,很有可能白努力,越学越崩溃。

    不止要有正向思维还要有逆向思维,在每个知识类别都有很多的公式,而这些公式之间却还有着巧妙的联系;记忆、计算、论证、空间、灵活、转变、各种你能在其他科目上找到的技巧几乎全部都会在数学上体现。

    很多网友说,被数学支配的恐惧与年龄无关,从小时候自己学习怕,长大后辅导孩子依旧还怕。

    也有网友说,人被逼急了什么事都能做得出来,数学题除外。

    尽管这只是一些玩笑话,但数学确实是一门没有天赋、无法学好的学科。

    或许你能在大学之前,依靠各种题海战术,名师的讲解拿到高考的满分,但进入大学或者更深入的学习后,你很快就会跟不上节奏。

    哪怕花费再多的时间,尽最大努力,也不一定能理解某些数学主题的含义,也无法学习应用那些比高中更复杂的定理和公式。

    比如勾股定理,这是进入初中就会学习的东西。

    勾三股四弦五。

    这是很多人的回忆。

    然而很多人也就记住了这一句,这是最常见的勾股数。

    但是后面呢?

    (5,12,13)(7,24,25)(9,40,41,)2n+1,2n^2+2n,2n^2+2n+1

    这些是最最最基础的数学,也不知道还有多少人记得。

    恐怕十分之一的人都没有,更别提与勾股数相关联的其他数学公式定理与数据了。

    如果在数学上没有天赋,学习起数学来,恐怕会相当痛苦。

    那种一堂课掉了一支笔,捡起来后,数学就再也没跟上过节奏的,也不是什么离奇的事情。

    宿舍中,徐川一边整理着米尔扎哈尼教授留给他的稿纸,同时也在整理着自己近半年来所学习的一些知识。

    “代数几何的一个基本结果是任意一个代数簇可以分解为不可约代数簇的并。这一分解称为不可缩的,如果任意一个不可约代数簇都不包含在其他代数簇中。”

    “而在在构造性代数几何中,上述定理可以通过&nbp;ritt-吴特征列方法构造性实现,设为有理系数&nbp;n个变量的多项式集合,我们用&nbp;zer表示&nbp;中多项式在复数域上的公共零点的集合,即代数簇。”

    “”

    “如果通过变量重新命名后可以写成如下形式

    a?(u?,···,&nbp;uq,&nbp;y?)=i?y??d?+y?的低次项;

    a?(u?,···,&nbp;uq,&nbp;y?,&nbp;y2)=&nbp;i?y??d?+y?的低次项;

    ······

    “ap(u?,···,&nbp;uq,&nbp;y?,···,&nbp;yp)=&nbp;ip?yp+yp的低次项。”
    第(1/3)页